The following Information is junk that I have stolen from several sites including Netscape and CBS.

If I have not given you credit, I’m Sorry, but I forgot every site that I went to.

[What are Cookies?]

Cookies are messages given to a Web browser by a Web server. The browser stores the message in a text file called cookie.txt. The message is then sent back to the server each time the browser requests a page from the server. The main purpose of cookies is to identify users and prepare customized Web pages for them.

[Why Does CBS.com Use Cookies?]

The first time you enter the CBS.com Web site, you are asked to enter your Zip Code. Your Zip Code information is then packaged into a cookie and sent to your Web browser which stores it for later use. The next time you go to CBS.com, your browser will send the cookie to the Web server. The server can use this information to present you with your local CBS.com site. This way you are able to view your local news and information at the click your mouse every time you enter the CBS.com site.

[Additional information on cookies:]

CNET article on cookie security This article, from April 1996, addresses privacy and security issues concerning cookies.

[Cookies specification]

This is Netscape's preliminary specification for HTTP cookies. Here you will find overview information as well as sample syntax and examples of transaction sequences. The truth about cookies (4/29/96)

This column isn't about Oreos, Mrs. Fields, or Famous Amos. But it is about cookies—magic cookies. The mere mention of this technology in my last column sparked such loud, sometimes angry responses that a detailed discussion is clearly in order here.

Also known as persistent cookies, or just plain cookies, magic cookies aren't magic at all. These files are essentially tokens of information, such as preferences and passwords, that Web servers collect from the clients that access them. That data is then stored on your own hard disk--not on the server. The next time you enter that site, the server looks for a file on your disk and reads the information you previously submitted. Most leading browsers, including Netscape Navigator and Microsoft Internet Explorer, support cookies. While having a remote site store data on your hard disk seems ominous, I'm unfazed by it. Magic cookies aren't a threat to security. In fact, they are often used in ways that can enhance the your time on the Web. Netscape uses cookies to let you access its new Personal Workspace area and also to save information about how you like your information presented. For instance, I don't like Netscape's use of frames, and I turn off that feature when I visit the site's home page.

If you take a look, you'll see the information is benign. The cookies.txt file is stored in the same folder as Netscape Navigator or Internet Explorer. It's a text file, so you can easily view it. In mine I can see that I've been to Netscape and that there are some statements in there about my preferences. I can also see that I've been to SEARCH.COM and that my preferences are stored there, too. When I visit my page at SEARCH.COM, I'm presented with my favorite search sites.

One smart use of cookie technology: Web supermarkets. Let's say my local supermarket is on the Web. Cookies can store my selections as I browse the aisles. As I choose a loaf of bread, a can of beans, and a six-pack (I eat well, don't I?) each item is stored in my cookies.txt file. The store owner can erase that info from my file when I'm finished or keep it there for retrieval next time I shop. That way he can greet me with a message such as, "Chris Barr, welcome back. Don't miss today's special on whole-wheat bread."

If you're still not convinced about the security issue, bear in mind that each time you enter a site, your browser already tells the server a lot about you, such as which browser you're using and your IP address. Take a look at BrowserWatch to see what I mean. And for sensitive data, Web masters can invoke a switch that requires a secure connection before it passes information. If you're still worried, you can always delete the cookies.txt file after each session!

Here's how some of you feel about the use of cookies:

"I had no idea this was being done! I think that doing it without full disclosure and consent sucks."--Robert von Tobel

"I think that Magic Cookies are useful as long as they are used properly. If they are used to track pirate software and where I go on the net, by people who have no reason to have that info, then I don't believe them. However I think that the magic cookie will be used responsibly. Imagine a world without passwords! (well maybe not)"--Mike Akers PERSISTENT CLIENT STATE

HTTP COOKIES

Preliminary Specification - Use with caution

INTRODUCTION

Cookies are a general mechanism which server side connections (such as CGI scripts) can use to both store and retrieve information on the client side of the connection. The addition of a simple, persistent, client-side state significantly extends the capabilities of Web-based client/server applications.

OVERVIEW

A server, when returning an HTTP object to a client, may also send a piece of state information which the client will store. Included in that state object is a description of the range of URLs for which that state is valid. Any future HTTP requests made by the client which fall in that range will include a transmittal of the current value of the state object from the client back to the server. The state object is called a cookie, for no compelling reason.

This simple mechanism provides a powerful new tool which enables a host of new types of applications to be written for web-based environments. Shopping applications can now store information about the currently selected items, for fee services can send back registration information and free the client from retyping a user-id on next connection, sites can store per-user preferences on the client, and have the client supply those preferences every time that site is connected to.

 SPECIFICATION

A cookie is introduced to the client by including a Set-Cookie header as part of an HTTP response, typically this will be generated by a CGI script.

Syntax of the Set-Cookie HTTP Response Header

This is the format a CGI script would use to add to the HTTP headers a new piece of data which is to be stored by the client for later retrieval.

Set-Cookie: NAME=VALUE; expires=DATE;

path=PATH; domain=DOMAIN_NAME; secure

NAME=VALUE

This string is a sequence of characters excluding semi-colon, comma and white space. If there is a need to place such data in the name or value, some encoding method such as URL style %XX encoding is recommended, though no encoding is defined or required.

This is the only required attribute on the Set-Cookie header.

expires=DATE

The expires attribute specifies a date string that defines the valid life time of that cookie. Once the expiration date has been reached, the cookie will no longer be stored or given out.

The date string is formatted as:

 Wdy, DD-Mon-YYYY HH:MM:SS GMT

This is based on RFC 822, RFC 850, RFC 1036, and RFC 1123, with the variations that the only legal time zone is GMT and the separators between the elements of the date must be dashes. expires is an optional attribute. If not specified, the cookie will expire when the user's session ends.

 Note: There is a bug in Netscape Navigator version 1.1 and earlier. Only cookies whose path attribute is set explicitly to "/" will be properly saved between sessions if they have an expires attribute.

domain=DOMAIN_NAME

When searching the cookie list for valid cookies, a comparison of the domain attributes of the cookie is made with the Internet domain name of the host from which the URL will be fetched. If there is a tail match, then the cookie will go through path matching to see if it should be sent. "Tail matching" means that domain attribute is matched against the tail of the fully qualified domain name of the host. A domain attribute of "acme.com" would match host names "anvil.acme.com" as well as "shipping.crate.acme.com".

Only hosts within the specified domain can set a cookie for a domain and domains must have at least two (2) or three (3) periods in them to prevent domains of the form: ".com", ".edu", and "va.us". Any domain that fails within one of the seven special top level domains listed below only require two periods. Any other domain requires at least three. The seven special top level domains are: "COM", "EDU", "NET", "ORG", "GOV", "MIL", and "INT".

The default value of domain is the host name of the server which generated the cookie response. path=PATH

The path attribute is used to specify the subset of URLs in a domain for which the cookie is valid. If a cookie has already passed domain matching, then the pathname component of the URL is compared with the path attribute, and if there is a match, the cookie is considered valid and is sent along with the URL request. The path "/foo" would match "/foobar" and "/foo/bar.html". The path "/" is the most general path.

If the path is not specified, it as assumed to be the same path as the document being described by the header which contains the cookie. secure

If a cookie is marked secure, it will only be transmitted if the communications channel with the host is a secure one. Currently this means that secure cookies will only be sent to HTTPS (HTTP over SSL) servers.

If secure is not specified, a cookie is considered safe to be sent in the clear over unsecured channels.

Syntax of the Cookie HTTP Request Header

When requesting a URL from an HTTP server, the browser will match the URL against all cookies and if any of them match, a line containing the name/value pairs of all matching cookies will be included in the HTTP request. Here is the format of that line:

Cookie: NAME1=OPAQUE_STRING1; NAME2=OPAQUE_STRING2 ...

Additional Notes

Multiple Set-Cookie headers can be issued in a single server response.

Instances of the same path and name will overwrite each other, with the latest instance taking precedence. Instances of the same path but different names will add additional mappings.

Setting the path to a higher-level value does not override other more specific path mappings. If there are multiple matches for a given cookie name, but with separate paths, all the matching cookies will be sent. (See examples below.)

The expires header lets the client know when it is safe to purge the mapping but the client is not required to do so. A client may also delete a cookie before it's expiration date arrives if the number of cookies exceeds its internal limits.

When sending cookies to a server, all cookies with a more specific path mapping should be sent before cookies with less specific path mappings. For example, a cookie "name1=foo" with a path mapping of "/" should be sent after a cookie "name1=foo2" with a path mapping of "/bar" if they are both to be sent.

There are limitations on the number of cookies that a client can store at any one time. This is a specification of the minimum number of cookies that a client should be prepared to receive and store.

300 total cookies

4 kilobytes per cookie, where the name and the OPAQUE_STRING combine to form the 4 kilobyte limit. 20 cookies per server or domain. (note that completely specified hosts and domains are treated as separate entities and have a 20 cookie limitation for each, not combined)

 Servers should not expect clients to be able to exceed these limits. When the 300 cookie limit or the 20 cookie per server limit is exceeded, clients should delete the least recently used cookie. When a cookie larger than 4 kilobytes is encountered the cookie should be trimmed to fit, but the name should remain intact as long as it is less than 4 kilobytes.

If a CGI script wishes to delete a cookie, it can do so by returning a cookie with the same name, and an expires time which is in the past. The path and name must match exactly in order for the expiring cookie to replace the valid cookie. This requirement makes it difficult for anyone but the originator of a cookie to delete a cookie.

When caching HTTP, as a proxy server might do, the Set-cookie response header should never be cached.

If a proxy server receives a response which contains a Set-cookie header, it should propagate the Set-cookie header to the client, regardless of whether the response was 304 (Not Modified) or 200 (OK).

Similarly, if a client request contains a Cookie: header, it should be forwarded through a proxy, even if the conditional If-modified-since request is being made.

 EXAMPLES

Here are some sample exchanges which are designed to illustrate the use of cookies.

First Example transaction sequence:

Client requests a document, and receives in the response:

Set-Cookie: CUSTOMER=WILE_E_COYOTE; path=/; expires=Wednesday, 09-Nov-99 23:12:40 GMT

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE

Client requests a document, and receives in the response:

Set-Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001; path=/

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001

Client receives:

Set-Cookie: SHIPPING=FEDEX; path=/foo

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001

When client requests a URL in path "/foo" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001; SHIPPING=FEDEX

Second Example transaction sequence:

Assume all mappings from above have been cleared.

Client receives:

Set-Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001; path=/

When client requests a URL in path "/" on this server, it sends:

Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001

Client receives:

Set-Cookie: PART_NUMBER=RIDING_ROCKET_0023; path=/ammo

When client requests a URL in path "/ammo" on this server, it sends:

Cookie: PART_NUMBER=RIDING_ROCKET_0023; PART_NUMBER=ROCKET_LAUNCHER_0001

NOTE: There are two name/value pairs named "PART_NUMBER" due to the inheritance of the "/" mapping in addition to the "/ammo" mapping.

WHAT IS A COOKIE?

Netscape's Client Side State definition:

Cookies are a general mechanism which server side connections (such as CGI scripts) can use to both store and retrieve information on the client side of the connection. The addition of a simple, persistent, client-side state significantly extends the capabilities of Web-based client/server applications

In human terms this means that Webservers now have (and have had for a long time) the ability to customize a website on a person by person basis. Imagine how hard it would be to keep preferences for every browser that has ever visited Yahoo, such a thing couldn't be done if the preferences had to be kept on the webserver it would amount to billions of bytes of data. A much better way to do this is for each browser to keep their own preferences. That's what cookies do.

Web Browsers set aside a small amount of space on your hard drive to keep these preferences, then every time you visit a website your browser checks to see if you have any predefined preferences (cookie) for that server if you do it sends the cookie to the server along with the request for a web page.

A browser will not give up it's cookie data to any server except the one that set it. If your browser went around spewing all it's cookies to every site you hit this would be a security risk and would make cookies worthless.

Cookies could be used for many of things; whether to display a page with frames or text only, shopping cart selections, your name, a user name and password, an account number for those sites that charge for viewing. The possibilities are endless, anytime personal data needs to be saved it can be saved as a cookie (if it isn't too long 4000 bytes is the limit).

WHAT IS IT USED FOR?

Cookies CANNOT be used to get a persons e-mail address. They can save the e-mail address after a browser types it into a form, but they can't GET anything. A cookie is just a holder.

HOW CAN I USE IT?

In order to use cookies on your website you will have to be able to have access to write a program/script to do it. There are two ways to script a cookie, one is to do it on the Server, that means that you write a CGI script that sets the cookie and serves you page. The other way is to do it on the client (e.g. Netscape MSIE) this is usually done with JavaScript.

If your service provider doesn't allow you to write CGIs on their server then you need to use JavaScript.

